Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 465 tok/s Pro
Kimi K2 205 tok/s Pro
2000 character limit reached

On the number of ground states of the Edwards-Anderson spin glass model (1110.6913v1)

Published 31 Oct 2011 in math.PR and cond-mat.dis-nn

Abstract: Ground states of the Edwards-Anderson (EA) spin glass model are studied on infinite graphs with finite degree. Ground states are spin configurations that locally minimize the EA Hamiltonian on each finite set of vertices. A problem with far-reaching consequences in mathematics and physics is to determine the number of ground states for the model on Zd for any d. This problem can be seen as the spin glass version of determining the number of infinite geodesics in first-passage percolation or the number of ground states in the disordered ferromagnet. It was recently shown by Newman, Stein and the two authors that, on the half-plane Z \times N, there is a unique ground state (up to global flip) arising from the weak limit of finite-volume ground states for a particular choice of boundary conditions. In this paper, we study the entire set of ground states on the infinite graph, proving that the number of ground states on the half-plane must be two (related by a global flip) or infinity. This is the first result on the entire set of ground states in a non-trivial dimension. In the first part of the paper, we develop tools of interest to prove the analogous result on Zd.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.