Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Topological contact dynamics I: symplectization and applications of the energy-capacity inequality (1110.6705v3)

Published 31 Oct 2011 in math.SG

Abstract: We introduce topological contact dynamics of a smooth manifold carrying a cooriented contact structure, generalizing previous work in the case of a symplectic structure [MO07] or a contact form [BS12]. A topological contact isotopy is not generated by a vector field; nevertheless, the group identities, the transformation law, and classical uniqueness results in the smooth case extend to topological contact isotopies and homeomorphisms, giving rise to an extension of smooth contact dynamics to topological dynamics. Our approach is via symplectization of a contact manifold, and our main tools are an energy-capacity inequality we prove for contact diffeomorphisms, combined with techniques from measure theory on oriented manifolds. We establish non-degeneracy of a Hofer-like bi-invariant pseudo-metric on the group of strictly contact diffeomorphisms constructed in [BD06]. The topological automorphism group of the contact structure exhibits rigidity properties analogous to those of symplectic diffeomorphisms, including C0-rigidity of contact and strictly contact diffeomorphisms.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.