Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Novel Kac-Moody-type affine extensions of non-crystallographic Coxeter groups (1110.5219v3)

Published 24 Oct 2011 in math-ph, cond-mat.other, hep-th, math.GR, math.MP, and physics.bio-ph

Abstract: Motivated by recent results in mathematical virology, we present novel asymmetric Z[tau]-integer-valued affine extensions of the non-crystallographic Coxeter groups H_2, H_3 and H_4 derived in a Kac-Moody-type formalism. In particular, we show that the affine reflection planes which extend the Coxeter group H_3 generate (twist) translations along 2-, 3- and 5-fold axes of icosahedral symmetry, and we classify these translations in terms of the Fibonacci recursion relation applied to different start values. We thus provide an explanation of previous results concerning affine extensions of icosahedral symmetry in a Coxeter group context, and extend this analysis to the case of the non-crystallographic Coxeter groups H_2 and H_4. These results will enable new applications of group theory in physics (quasicrystals), biology (viruses) and chemistry (fullerenes).

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.