Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On some fundamental results about higher-rank graphs and their C*-algebras (1110.2269v1)

Published 11 Oct 2011 in math.CO and math.OA

Abstract: Results of Fowler and Sims show that every k-graph is completely determined by its k-coloured skeleton and collection of commuting squares. Here we give an explicit description of the k-graph associated to a given skeleton and collection of squares and show that two k-graphs are isomorphic if and only if there is an isomorphism of their skeletons which preserves commuting squares. We use this to prove directly that each k-graph {\Lambda} is isomorphic to the quotient of the path category of its skeleton by the equivalence relation determined by the commuting squares, and show that this extends to a homeomorphism of infinite-path spaces when the k-graph is row finite with no sources. We conclude with a short direct proof of the characterisation, originally due to Robertson and Sims, of simplicity of the C*-algebra of a row-finite k-graph with no sources.

Summary

We haven't generated a summary for this paper yet.