Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph product structure for non-minor-closed classes (1907.05168v5)

Published 11 Jul 2019 in math.CO and cs.DM

Abstract: Dujmovi\'c et al. [\emph{J.~ACM}~'20] recently proved that every planar graph is isomorphic to a subgraph of the strong product of a bounded treewidth graph and a path. Analogous results were obtained for graphs of bounded Euler genus or apex-minor-free graphs. These tools have been used to solve longstanding problems on queue layouts, non-repetitive colouring, $p$-centered colouring, and adjacency labelling. This paper proves analogous product structure theorems for various non-minor-closed classes. One noteable example is $k$-planar graphs (those with a drawing in the plane in which each edge is involved in at most $k$ crossings). We prove that every $k$-planar graph is isomorphic to a subgraph of the strong product of a graph of treewidth $O(k5)$ and a path. This is the first result of this type for a non-minor-closed class of graphs. It implies, amongst other results, that $k$-planar graphs have non-repetitive chromatic number upper-bounded by a function of $k$. All these results generalise for drawings of graphs on arbitrary surfaces. In fact, we work in a more general setting based on so-called shortcut systems, which are of independent interest. This leads to analogous results for certain types of map graphs, string graphs, graph powers, and nearest neighbour graphs.

Citations (41)

Summary

We haven't generated a summary for this paper yet.