Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Random walks in cones (1110.1254v3)

Published 6 Oct 2011 in math.PR

Abstract: We study the asymptotic behavior of a multidimensional random walk in a general cone. We find the tail asymptotics for the exit time and prove integral and local limit theorems for a random walk conditioned to stay in a cone. The main step in the proof consists in constructing a positive harmonic function for our random walk under minimal moment restrictions on the increments. For the proof of tail asymptotics and integral limit theorems, we use a strong approximation of random walks by Brownian motion. For the proof of local limit theorems, we suggest a rather simple approach, which combines integral theorems for random walks in cones with classical local theorems for unrestricted random walks. We also discuss some possible applications of our results to ordered random walks and lattice path enumeration.

Summary

We haven't generated a summary for this paper yet.