Papers
Topics
Authors
Recent
Search
2000 character limit reached

Representation of Quantum Field Theory by Elementary Quantum Information

Published 5 Oct 2011 in quant-ph | (1110.0986v2)

Abstract: In this paper is considered relativistic quantum field theory expressed by elementary units of quantum information as they are considered as fundamental entity of nature by Carl Friedrich von Weizsaecker. Through quantization of a Weyl spinor describing an elementary unit of quantum information and consisting of four real components one obtains four pairs of creation and annihilation operators acting in a tensor space of states containing many units of quantum information. There can be constructed position and momentum operators from the creation and annihilation operators and based on these operators the Poincare group can be represented in this abstract tensor space of quantum information. A general state in the tensor space can be mapped to a state in Minkowski space-time by using the position representation of the eigenstates of the occupation number operators which correspond to the eigenstates of the harmonic oscillator. This yields a description of relativistic quantum mechanics. Quantization of the coefficients of a general state in the tensor space leads to many particle theory and thus to quantum field theory.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.