Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

A Statistical Significance Simulation Study for the General Scientist (1109.6565v1)

Published 29 Sep 2011 in stat.OT, physics.data-an, and stat.AP

Abstract: When a scientist performs an experiment they normally acquire a set of measurements and are expected to demonstrate that their results are "statistically significant" thus confirming whatever hypothesis they are testing. The main method for establishing statistical significance involves demonstrating that there is a low probability that the observed experimental results were the product of random chance. This is typically defined as p < 0.05, which indicates there is less than a 5% chance that the observed results occurred randomly. This research study visually demonstrates that the commonly used definition for "statistical significance" can erroneously imply a significant finding. This is demonstrated by generating random Gaussian noise data and analyzing that data using statistical testing based on the established two-sample t-test. This study demonstrates that insignificant yet "statistically significant" findings are possible at moderately large sample sizes which are very common in many fields of modern science.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)