The Dirichlet Process with Large Concentration Parameter (1109.5261v3)
Abstract: Ferguson's Dirichlet process plays an important role in nonparametric Bayesian inference. Let $P_a$ be the Dirichlet process in $\mathbb{R}$ with a base probability measure $H$ and a concentration parameter $a>0.$ In this paper, we show that $\sqrt {a} \big(P_a((-\infty,t]) -H((-\infty,t])\big)$ converges to a certain Brownian bridge as $a \to \infty.$ We also derive a certain Glivenko-Cantelli theorem for the Dirichlet process. Using the functional delta method, the weak convergence of the quantile process is also obtained. A large concentration parameter occurs when a statistician puts too much emphasize on his/her prior guess. This scenario also happens when the sample size is large and the posterior is used to make inference.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.