Papers
Topics
Authors
Recent
Search
2000 character limit reached

Distributivity versus associativity in the homology theory of algebraic structures

Published 22 Sep 2011 in math.GT and math.AT | (1109.4850v1)

Abstract: While homology theory of associative structures, such as groups and rings, has been extensively studied in the past beginning with the work of Hopf, Eilenberg, and Hochschild, homology of non-associative distributive structures, such as quandles, were neglected until recently. Distributive structures have been studied for a long time. In 1880, C.S. Peirce emphasized the importance of (right) self-distributivity in algebraic structures. However, homology for these universal algebras was introduced only sixteen years ago by Fenn, Rourke, and Sanderson. We develop this theory in the historical context and propose a general framework to study homology of distributive structures. We illustrate the theory by computing some examples of 1-term, 2-term, and 3-term homology, and then discussing 4-term homology for Boolean algebras and distributive lattices. We outline potential relations to Khovanov homology, via the Yang-Baxter operator.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.