Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributivity versus associativity in the homology theory of algebraic structures (1109.4850v1)

Published 22 Sep 2011 in math.GT and math.AT

Abstract: While homology theory of associative structures, such as groups and rings, has been extensively studied in the past beginning with the work of Hopf, Eilenberg, and Hochschild, homology of non-associative distributive structures, such as quandles, were neglected until recently. Distributive structures have been studied for a long time. In 1880, C.S. Peirce emphasized the importance of (right) self-distributivity in algebraic structures. However, homology for these universal algebras was introduced only sixteen years ago by Fenn, Rourke, and Sanderson. We develop this theory in the historical context and propose a general framework to study homology of distributive structures. We illustrate the theory by computing some examples of 1-term, 2-term, and 3-term homology, and then discussing 4-term homology for Boolean algebras and distributive lattices. We outline potential relations to Khovanov homology, via the Yang-Baxter operator.

Summary

We haven't generated a summary for this paper yet.