Position and Momentum Uncertainties of the Normal and Inverted Harmonic Oscillators under the Minimal Length Uncertainty Relation
Abstract: We analyze the position and momentum uncertainties of the energy eigenstates of the harmonic oscillator in the context of a deformed quantum mechanics, namely, that in which the commutator between the position and momentum operators is given by [x,p]=i\hbar(1+\beta p2). This deformed commutation relation leads to the minimal length uncertainty relation \Delta x > (\hbar/2)(1/\Delta p +\beta\Delta p), which implies that \Delta x ~ 1/\Delta p at small \Delta p while \Delta x ~ \Delta p at large \Delta p. We find that the uncertainties of the energy eigenstates of the normal harmonic oscillator (m>0), derived in Ref. [1], only populate the \Delta x ~ 1/\Delta p branch. The other branch, \Delta x ~ \Delta p, is found to be populated by the energy eigenstates of the `inverted' harmonic oscillator (m<0). The Hilbert space in the 'inverted' case admits an infinite ladder of positive energy eigenstates provided that \Delta x_{min} = \hbar\sqrt{\beta} > \sqrt{2} [\hbar2/k|m|]{1/4}. Correspondence with the classical limit is also discussed.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.