Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

Online Learning Algorithms for Stochastic Water-Filling (1109.2088v1)

Published 9 Sep 2011 in cs.LG, cs.NI, cs.SY, math.OC, and math.PR

Abstract: Water-filling is the term for the classic solution to the problem of allocating constrained power to a set of parallel channels to maximize the total data-rate. It is used widely in practice, for example, for power allocation to sub-carriers in multi-user OFDM systems such as WiMax. The classic water-filling algorithm is deterministic and requires perfect knowledge of the channel gain to noise ratios. In this paper we consider how to do power allocation over stochastically time-varying (i.i.d.) channels with unknown gain to noise ratio distributions. We adopt an online learning framework based on stochastic multi-armed bandits. We consider two variations of the problem, one in which the goal is to find a power allocation to maximize $\sum\limits_i \mathbb{E}[\log(1 + SNR_i)]$, and another in which the goal is to find a power allocation to maximize $\sum\limits_i \log(1 + \mathbb{E}[SNR_i])$. For the first problem, we propose a \emph{cognitive water-filling} algorithm that we call CWF1. We show that CWF1 obtains a regret (defined as the cumulative gap over time between the sum-rate obtained by a distribution-aware genie and this policy) that grows polynomially in the number of channels and logarithmically in time, implying that it asymptotically achieves the optimal time-averaged rate that can be obtained when the gain distributions are known. For the second problem, we present an algorithm called CWF2, which is, to our knowledge, the first algorithm in the literature on stochastic multi-armed bandits to exploit non-linear dependencies between the arms. We prove that the number of times CWF2 picks the incorrect power allocation is bounded by a function that is polynomial in the number of channels and logarithmic in time, implying that its frequency of incorrect allocation tends to zero.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.