Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Estimating the number of zero-one multi-way tables via sequential importance sampling (1108.5939v2)

Published 30 Aug 2011 in math.ST, math.CO, and stat.TH

Abstract: In 2005, Chen et al introduced a sequential importance sampling (SIS) procedure to analyze zero-one two-way tables with given fixed marginal sums (row and column sums) via the conditional Poisson (CP) distribution. They showed that compared with Monte Carlo Markov chain (MCMC)-based approaches, their importance sampling method is more efficient in terms of running time and also provides an easy and accurate estimate of the total number of contingency tables with fixed marginal sums. In this paper we extend their result to zero-one multi-way ($d$-way, $d \geq 2$) contingency tables under the no $d$-way interaction model, i.e., with fixed $d - 1$ marginal sums. Also we show by simulations that the SIS procedure with CP distribution to estimate the number of zero-one three-way tables under the no three-way interaction model given marginal sums works very well even with some rejections. We also applied our method to Samson's monks' data set. We end with further questions on the SIS procedure on zero-one multi-way tables.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.