Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dirac's theorem for random graphs (1108.2502v3)

Published 11 Aug 2011 in math.CO

Abstract: A classical theorem of Dirac from 1952 asserts that every graph on $n$ vertices with minimum degree at least $\lceil n/2 \rceil$ is Hamiltonian. In this paper we extend this result to random graphs. Motivated by the study of resilience of random graph properties we prove that if $p \gg \log n /n$, then a.a.s. every subgraph of $G(n,p)$ with minimum degree at least $(1/2+o(1))np$ is Hamiltonian. Our result improves on previously known bounds, and answers an open problem of Sudakov and Vu. Both, the range of edge probability $p$ and the value of the constant 1/2 are asymptotically best possible.

Summary

We haven't generated a summary for this paper yet.