Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Simple Extension of Dirac's Theorem on Hamiltonicity (1606.03687v1)

Published 12 Jun 2016 in cs.DM and math.CO

Abstract: The classical Dirac theorem asserts that every graph $G$ on $n$ vertices with minimum degree $\delta(G) \ge \lceil n/2 \rceil$ is Hamiltonian. The lower bound of $\lceil n/2 \rceil$ on the minimum degree of a graph is tight. In this paper, we extend the classical Dirac theorem to the case where $\delta(G) \ge \lfloor n/2 \rfloor $ by identifying the only non-Hamiltonian graph families in this case. We first present a short and simple proof. We then provide an alternative proof that is constructive and self-contained. Consequently, we provide a polynomial-time algorithm that constructs a Hamiltonian cycle, if exists, of a graph $G$ with $\delta(G) \ge \lfloor n/2 \rfloor$, or determines that the graph is non-Hamiltonian. Finally, we present a self-contained proof for our algorithm which provides insight into the structure of Hamiltonian cycles when $\delta(G) \ge \lfloor n/2 \rfloor$ and is promising for extending the results of this paper to the cases with smaller degree bounds.

Summary

We haven't generated a summary for this paper yet.