Collapsing of abelian fibred Calabi-Yau manifolds (1108.0967v2)
Abstract: We study the collapsing behaviour of Ricci-flat Kahler metrics on a projective Calabi-Yau manifold which admits an abelian fibration, when the volume of the fibers approaches zero. We show that away from the critical locus of the fibration the metrics collapse with locally bounded curvature, and along the fibers the rescaled metrics become flat in the limit. The limit metric on the base minus the critical locus is locally isometric to an open dense subset of any Gromov-Hausdorff limit space of the Ricci-flat metrics. We then apply these results to study metric degenerations of families of polarized hyperkahler manifolds in the large complex structure limit. In this setting we prove an analog of a result of Gross-Wilson for K3 surfaces, which is motivated by the Strominger-Yau-Zaslow picture of mirror symmetry.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.