Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 202 tok/s Pro
2000 character limit reached

Current Algebras and QP Manifolds (1108.0473v3)

Published 2 Aug 2011 in hep-th, math-ph, math.DG, math.MP, and math.SG

Abstract: Generalized current algebras introduced by Alekseev and Strobl in two dimensions are reconstructed by a graded manifold and a graded Poisson brackets. We generalize their current algebras to higher dimensions. QP manifolds provide the unified structures of current algebras in any dimension. Current algebras give rise to structures of Leibniz/Loday algebroids, which are characterized by QP structures. Especially, in three dimensions, a current algebra has a structure of a Lie algebroid up to homotopy introduced by Uchino and one of the authors which has a bracket of a generalization of the Courant-Dorfman bracket. Anomaly cancellation conditions are reinterpreted as generalizations of the Dirac structure.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.