Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Emergence of thin shell structure during collapse in isotropic coordinates (1108.0449v2)

Published 2 Aug 2011 in gr-qc and hep-th

Abstract: Numerical studies of gravitational collapse in isotropic coordinates have recently shown an interesting connection between the gravitational Lagrangian and black hole thermodynamics. A study of the actual spacetime was not the main focus of this work and in particular, the rich and interesting structure of the interior has not been investigated in much detail and remains largely unknown. We elucidate its features by performing a numerical study of the spacetime in isotropic coordinates during gravitational collapse of a massless scalar field. The most salient feature to emerge is the formation of a thin shell of matter just inside the apparent horizon. The energy density and Ricci scalar peak at the shell and there is a jump discontinuity in the extrinsic curvature across the apparent horizon, the haLLMark that a thin shell is present in its vicinity. At late stages of the collapse, the spacetime consists of two vacuum regions separated by the thin shell. The interior is described by an interesting collapsing isotropic universe. It tends towards a vacuum (never reaches a perfect vacuum) and there is a slight inhomogeneity in the interior that plays a crucial role in the collapse process as the areal radius tends to zero. The spacetime evolves towards a curvature (physical) singularity in the interior, both a Weyl and Ricci singularity. In the exterior, our numerical results match closely the analytical form of the Schwarzschild metric in isotropic coordinates, providing a strong test of our numerical code.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.