Papers
Topics
Authors
Recent
Search
2000 character limit reached

Systole et rayon maximal des variétés hyperboliques non compactes

Published 28 Jul 2011 in math.GT | (1107.5975v1)

Abstract: We bound two global invariants of cusped hyperbolic manifolds: the length of the shortest closed geodesic (the systole), and the radius of the biggest embedded ball (the inradius). We give an upper bound for the systole, expressed in terms of the dimension and simplicial volume. We find a positive lower bound on the inradius independent of the dimension. These bounds are sharp in dimension 3, realized by the Gieseking manifold. It provides a new characterization of this manifold.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.