Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 419 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Systole et rayon maximal des variétés hyperboliques non compactes (1107.5975v1)

Published 28 Jul 2011 in math.GT

Abstract: We bound two global invariants of cusped hyperbolic manifolds: the length of the shortest closed geodesic (the systole), and the radius of the biggest embedded ball (the inradius). We give an upper bound for the systole, expressed in terms of the dimension and simplicial volume. We find a positive lower bound on the inradius independent of the dimension. These bounds are sharp in dimension 3, realized by the Gieseking manifold. It provides a new characterization of this manifold.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)