Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lower Bounds for the Smoothed Number of Pareto optimal Solutions (1012.1163v1)

Published 6 Dec 2010 in cs.DS

Abstract: In 2009, Roeglin and Teng showed that the smoothed number of Pareto optimal solutions of linear multi-criteria optimization problems is polynomially bounded in the number $n$ of variables and the maximum density $\phi$ of the semi-random input model for any fixed number of objective functions. Their bound is, however, not very practical because the exponents grow exponentially in the number $d+1$ of objective functions. In a recent breakthrough, Moitra and O'Donnell improved this bound significantly to $O(n{2d} \phi{d(d+1)/2})$. An "intriguing problem", which Moitra and O'Donnell formulate in their paper, is how much further this bound can be improved. The previous lower bounds do not exclude the possibility of a polynomial upper bound whose degree does not depend on $d$. In this paper we resolve this question by constructing a class of instances with $\Omega ((n \phi){(d-\log{d}) \cdot (1-\Theta{1/\phi})})$ Pareto optimal solutions in expectation. For the bi-criteria case we present a higher lower bound of $\Omega (n2 \phi{1 - \Theta{1/\phi}})$, which almost matches the known upper bound of $O(n2 \phi)$.

Citations (8)

Summary

We haven't generated a summary for this paper yet.