Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weighted Local Orlicz-Hardy Spaces with Applications to Pseudo-differential Operators (1107.3266v1)

Published 17 Jul 2011 in math.CA and math.FA

Abstract: Let $\Phi$ be a concave function on $(0,\infty)$ of strictly lower type $p_{\Phi}\in(0,1]$ and $\omega\in A{\mathop\mathrm{loc}}_{\infty}(\mathbb{R}n)$. We introduce the weighted local Orlicz-Hardy space $h{\Phi}_{\omega}(\mathbb{R}n)$ via the local grand maximal function. Let $\rho(t)\equiv t{-1}/\Phi{-1}(t{-1})$ for all $t\in(0,\infty)$. We also introduce the $\mathop\mathrm{BMO}$-type space $\mathop\mathrm{bmo}{\rho,\,\omega}(\mathbb{R}n)$ and establish the duality between $h{\Phi}{\omega}(\mathbb{R}n)$ and $\mathop\mathrm{bmo}{\rho,\,\omega}(\mathbb{R}n)$. Several real-varaiable characterizations of $h{\Phi}{\omega}(\mathbb{R}n)$ are presented. Using the atomic characterization, we prove the existence of finite atomic decompositions achieving the norm in some dense subspaces of $h{\Phi}_{\omega}(\mathbb{R}n)$. As applications, we show that the local Riesz transforms are bounded on $h{\Phi}_{\omega}(\mathbb{R}n)$, the local fractional integrals are bounded from {\normalsize$hp_{\omegap}(\mathbb{R}n)$} to {\normalsize$Lq_{\omegaq}(\mathbb{R}n)$} when $q>1$ and from {\normalsize$hp_{\omegap}(\mathbb{R}n)$} to {\normalsize$hq_{\omegaq}(\mathbb{R}n)$} when $q\le 1$, and some pseudo-differential operators are also bounded on both $h{\Phi}_{\omega}(\mathbb{R}n)$. All results for any general $\Phi$ even when $\omega\equiv 1$ are new.

Summary

We haven't generated a summary for this paper yet.