Ancestral branching, cut-and-paste algorithms and associated tree and partition-valued processes (1107.2433v2)
Abstract: We introduce an algorithm for generating a random sequence of fragmentation trees, which we call the ancestral branching algorithm. This algorithm builds on the recursive partitioning structure of a tree and gives rise to an associated family of Markovian transition kernels whose finite-dimensional transition probabilities can be written in closed-form as the product over partition-valued Markov kernels. The associated tree-valued Markov process is infinitely exchangeable provided its associated partition-valued kernel is infinitely exchangeable. We also identify a transition procedure on partitions, called the cut-and-paste algorithm, which corresponds to a previously studied partition-valued Markov process on partitions with a bounded number of blocks. Specifically, we discuss the corresponding family of tree-valued Markov kernels generated by the combination of both the ancestral branching and cut-and-paste transition probabilities and show results for the equilibrium measure of this process, as well as its associated mass fragmentation-valued and weighted tree-valued processes.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.