Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Borel structure of the spectrum of a closed operator (1107.1512v1)

Published 7 Jul 2011 in math.FA and math.SP

Abstract: For a linear operator $T$ in a Banach space let $\sigma_p(T)$ denote the point spectrum of $T$, $\sigma_{p[n]}(T)$ for finite $n > 0$ be the set of all $\lambda \in \sigma_p(T)$ such that $\dim \ker (T - \lambda) = n$ and let $\sigma_{p[\infty]}(T)$ be the set of all $\lambda \in \sigma_p(T)$ for which $\ker (T - \lambda)$ is infinite-dimensional. It is shown that $\sigma_p(T)$ is $\mathcal{F}{\sigma}$, $\sigma{p[\infty]}(T)$ is $\mathcal{F}{\sigma\delta}$ and for each finite $n$ the set $\sigma{p[n]}(T)$ is the intersection of an $\mathcal{F}{\sigma}$ and a $\mathcal{G}{\delta}$ set provided $T$ is closable and the domain of $T$ is separable and weakly $\sigma$-compact. For closed densely defined operators in a separable Hilbert space $\mathcal{H}$ more detailed decomposition of the spectra is done and the algebra of all bounded linear operators on $\mathcal{H}$ is decomposed into Borel parts. In particular, it is shown that the set of all closed range operators on $\mathcal{H}$ is Borel.

Summary

We haven't generated a summary for this paper yet.