Text Classification: A Sequential Reading Approach (1107.1322v3)
Abstract: We propose to model the text classification process as a sequential decision process. In this process, an agent learns to classify documents into topics while reading the document sentences sequentially and learns to stop as soon as enough information was read for deciding. The proposed algorithm is based on a modelisation of Text Classification as a Markov Decision Process and learns by using Reinforcement Learning. Experiments on four different classical mono-label corpora show that the proposed approach performs comparably to classical SVM approaches for large training sets, and better for small training sets. In addition, the model automatically adapts its reading process to the quantity of training information provided.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.