Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The dimension of ergodic random sequences (1107.1149v3)

Published 6 Jul 2011 in cs.IT and math.IT

Abstract: Let \mu be a computable ergodic shift-invariant measure over the Cantor space. Providing a constructive proof of Shannon-McMillan-Breiman theorem, V'yugin proved that if a sequence x is Martin-L\"of random w.r.t. \mu then the strong effective dimension Dim(x) of x equals the entropy of \mu. Whether its effective dimension dim(x) also equals the entropy was left as an problem question. In this paper we settle this problem, providing a positive answer. A key step in the proof consists in extending recent results on Birkhoff's ergodic theorem for Martin-L\"of random sequences.

Citations (24)

Summary

We haven't generated a summary for this paper yet.