Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Division Algebras, Supersymmetry and Higher Gauge Theory (1106.3385v1)

Published 17 Jun 2011 in math-ph, hep-th, math.DG, math.MP, and math.RA

Abstract: From the four normed division algebras--the real numbers, complex numbers, quaternions and octonions, of dimension k=1, 2, 4 and 8, respectively--a systematic procedure gives a 3-cocycle on the Poincare superalgebra in dimensions k+2=3, 4, 6 and 10, and a 4-cocycle on the Poincare superalgebra in dimensions k+3=4, 5, 7 and 11. The existence of these cocycles follow from spinor identities that hold only in these dimensions, and which are closely related to the existence of the superstring in dimensions k+2, and the super-2-brane in dimensions k+3. In general, an (n+1)-cocycle on a Lie superalgebra yields a Lie n-superalgebra': that is, roughly, an n-term chain complex equipped with a bracket satisfying the axioms of a Lie superalgebra up to chain homotopy. We thus obtain Lie 2-superalgebras extending the Poincare superalgebra in dimensions k+2, and Lie 3-superalgebras extending the Poincare superalgebra in dimensions k+3. We present evidence, based on the work of Sati, Schreiber and Stasheff, that these Lie n-superalgebras describe infinitesimalhigher symmetries' of the superstring and 2-brane. Generically, integrating a Lie n-superalgebra to a Lie n-supergroup yields a Lie n-supergroup' that is hugely infinite-dimensional. However, when the Lie n-superalgebra is obtained from an (n+1)-cocycle on a nilpotent Lie superalgebra, there is a geometric procedure to integrate the cocycle to one on the corresponding nilpotent Lie supergroup. In general, a smooth (n+1)-cocycle on a supergroup yields aLie n-supergroup': that is, a weak n-group internal to supermanifolds. Using our geometric procedure to integrate the 3-cocycle in dimensions k+2, we obtain a Lie 2-supergroup extending the Poincare supergroup in those dimensions, and similarly integrating the 4-cocycle in dimensions k+3, we obtain a Lie 3-supergroup extending the Poincare supergroup in those dimensions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube