CFT dual of the AdS Dirichlet problem: Fluid/Gravity on cut-off surfaces (1106.2577v2)
Abstract: We study the gravitational Dirichlet problem in AdS spacetimes with a view to understanding the boundary CFT interpretation. We define the problem as bulk Einstein's equations with Dirichlet boundary conditions on fixed timelike cut-off hypersurface. Using the fluid/gravity correspondence, we argue that one can determine non-linear solutions to this problem in the long wavelength regime. On the boundary we find a conformal fluid with Dirichlet constitutive relations, viz., the fluid propagates on a `dynamical' background metric which depends on the local fluid velocities and temperature. This boundary fluid can be re-expressed as an emergent hypersurface fluid which is non-conformal but has the same value of the shear viscosity as the boundary fluid. The hypersurface dynamics arises as a collective effect, wherein effects of the background are transmuted into the fluid degrees of freedom. Furthermore, we demonstrate that this collective fluid is forced to be non-relativistic below a critical cut-off radius in AdS to avoid acausal sound propagation with respect to the hypersurface metric. We further go on to show how one can use this set-up to embed the recent constructions of flat spacetime duals to non-relativistic fluid dynamics into the AdS/CFT correspondence, arguing that a version of the membrane paradigm arises naturally when the boundary fluid lives on a background Galilean manifold.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.