Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Collective Intelligence, Data Routing and Braess' Paradox (1106.1821v1)

Published 9 Jun 2011 in cs.AI

Abstract: We consider the problem of designing the the utility functions of the utility-maximizing agents in a multi-agent system so that they work synergistically to maximize a global utility. The particular problem domain we explore is the control of network routing by placing agents on all the routers in the network. Conventional approaches to this task have the agents all use the Ideal Shortest Path routing Algorithm (ISPA). We demonstrate that in many cases, due to the side-effects of one agent's actions on another agent's performance, having agents use ISPA's is suboptimal as far as global aggregate cost is concerned, even when they are only used to route infinitesimally small amounts of traffic. The utility functions of the individual agents are not "aligned" with the global utility, intuitively speaking. As a particular example of this we present an instance of Braess' paradox in which adding new links to a network whose agents all use the ISPA results in a decrease in overall throughput. We also demonstrate that load-balancing, in which the agents' decisions are collectively made to optimize the global cost incurred by all traffic currently being routed, is suboptimal as far as global cost averaged across time is concerned. This is also due to 'side-effects', in this case of current routing decision on future traffic. The mathematics of Collective Intelligence (COIN) is concerned precisely with the issue of avoiding such deleterious side-effects in multi-agent systems, both over time and space. We present key concepts from that mathematics and use them to derive an algorithm whose ideal version should have better performance than that of having all agents use the ISPA, even in the infinitesimal limit. We present experiments verifying this, and also showing that a machine-learning-based version of this COIN algorithm in which costs are only imprecisely estimated via empirical means (a version potentially applicable in the real world) also outperforms the ISPA, despite having access to less information than does the ISPA. In particular, this COIN algorithm almost always avoids Braess' paradox.

Citations (94)

Summary

We haven't generated a summary for this paper yet.