Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

On the first eigenvalue of the Dirichlet-to-Neumann operator on forms (1105.2711v2)

Published 13 May 2011 in math.DG

Abstract: We study a Dirichlet-to-Neumann eigenvalue problem for differential forms on a compact Riemannian manifold with smooth boundary. This problem is a natural generalization of the classical Steklov problem on functions. We derive a number of upper and lower bounds for the first eigenvalue in several contexts: many of these estimates will be sharp, and for some of them we characterize equality. We also relate these new eigenvalues with those of other operators, like the Hodge Laplacian or the biharmonic Steklov operator.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube