Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scaling limits of Markov branching trees and Galton-Watson trees conditioned on the number of vertices with out-degree in a given set (1105.2528v2)

Published 12 May 2011 in math.PR

Abstract: We generalize recent results of Haas and Miermont to obtain scaling limits of Markov branching trees whose size is specified by the number of nodes whose out-degree lies in a given set. We then show that this implies that the scaling limit of finite variance Galton-Watson trees condition on the number of nodes whose out-degree lies in a given set is the Brownian continuum random tree. The key to this is a generalization of the classical Otter-Dwass formula.

Summary

We haven't generated a summary for this paper yet.