Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scaling limits and influence of the seed graph in preferential attachment trees (1406.1758v1)

Published 6 Jun 2014 in math.PR, cs.DM, math.ST, and stat.TH

Abstract: We are interested in the asymptotics of random trees built by linear preferential attachment, also known in the literature as Barab\'asi-Albert trees or plane-oriented recursive trees. We first prove a conjecture of Bubeck, Mossel & R\'acz concerning the influence of the seed graph on the asymptotic behavior of such trees. Separately we study the geometric structure of nodes of large degrees in a plane version of Barab\'asi-Albert trees via their associated looptrees. As the number of nodes grows, we show that these looptrees, appropriately rescaled, converge in the Gromov-Hausdorff sense towards a random compact metric space which we call the Brownian looptree. The latter is constructed as a quotient space of Aldous' Brownian Continuum Random Tree and is shown to have almost sure Hausdorff dimension $2$.

Citations (37)

Summary

We haven't generated a summary for this paper yet.