Regularity of affine processes on general state spaces (1105.0632v2)
Abstract: We consider a stochastically continuous, affine Markov process in the sense of Duffie, Filipovic and Schachermayer, with cadlag paths, on a general state space D, i.e. an arbitrary Borel subset of Rd. We show that such a process is always regular, meaning that its Fourier-Laplace transform is differentiable in time, with derivatives that are continuous in the transform variable. As a consequence, we show that generalized Riccati equations and Levy-Khintchine parameters for the process can be derived, as in the case of $D = R_+m \times Rn$ studied in Duffie, Filipovic and Schachermayer (2003). Moreover, we show that when the killing rate is zero, the affine process is a semi-martingale with absolutely continuous characteristics up to its time of explosion. Our results generalize the results of Keller-Ressel, Schachermayer and Teichmann (2011) for the state space $R_+m \times Rn$ and provide a new probabilistic approach to regularity.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.