Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Entropy Rounding Method in Approximation Algorithms (1104.4597v1)

Published 24 Apr 2011 in cs.DS and math.CO

Abstract: Let A be a matrix, c be any linear objective function and x be a fractional vector, say an LP solution to some discrete optimization problem. Then a recurring task in theoretical computer science (and in approximation algorithms in particular) is to obtain an integral vector y such that Ax is roughly Ay and c*y exceeds c*x by only a moderate factor. We give a new randomized rounding procedure for this task, provided that A has bounded Delta-approximate entropy. This property means that for uniformly chosen random signs chi(j) in {-1,+1} on any subset of the columns, the outcome A*chi can be approximately described using a sub-linear number of bits in expectation. To achieve this result, we modify well-known techniques from the field of discrepancy theory, especially we rely on Beck's entropy method, which to the best of our knowledge has never been used before in the context of approximation algorithms. Our result can be made constructive using the Bansal framework based on semidefinite programming. We demonstrate the versatility of our procedure by rounding fractional solutions to column-based linear programs for some generalizations of Bin Packing. For example we obtain a polynomial time OPT + O(log2 OPT) approximation for Bin Packing With Rejection and the first AFPTAS for the Train Delivery problem.

Citations (22)

Summary

We haven't generated a summary for this paper yet.