Papers
Topics
Authors
Recent
2000 character limit reached

Quadratic differentials and equivariant deformation theory of curves

Published 18 Apr 2011 in math.AG | (1104.3539v1)

Abstract: Given a finite p-group G acting on a smooth projective curve X over an algebraically closed field k of characteristic p, the dimension of the tangent space of the associated equivariant deformation functor is equal to the dimension of the space of coinvariants of G acting on the space V of global holomorphic quadratic differentials on X. We apply known results about the Galois module structure of Riemann-Roch spaces to compute this dimension when G is cyclic or when the action of G on X is weakly ramified. Moreover we determine certain subrepresentations of V, called p-rank representations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.