Papers
Topics
Authors
Recent
Search
2000 character limit reached

Solutions to two problems on permanents

Published 18 Apr 2011 in math.RA and math.CO | (1104.3531v2)

Abstract: In this note we settle two open problems in the theory of permanents by using recent results from other areas of mathematics. Bapat conjectured that certain quotients of permanents, which generalize symmetric function means, are concave. We prove this conjecture by using concavity properties of hyperbolic polynomials. Motivated by problems on random point processes, Shirai and Takahashi raised the problem: Determine all real numbers $\alpha$ for which the $\alpha$-permanent (or $\alpha$-determinant) is nonnegative for all positive semidefinite matrices. We give a complete solution to this problem by using recent results of Scott and Sokal on completely monotone functions. It turns out that the conjectured answer to the problem is false.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.