Fields and rings with few types (1104.0288v1)
Abstract: Let R be an associative ring with possible extra structure. R is said to be weakly small if there are countably many 1-types over any finite subset of R. It is locally P if the algebraic closure of any finite subset of R has property P. It is shown here that a field extension of finite degree of a weakly small field either is a finite field or has no Artin-Schreier extension. A weakly small field of characteristic 2 is finite or algebraically closed. Every weakly small division ring of positive characteristic is locally finite dimensional over its centre. The Jacobson radical of a weakly small ring is locally nilpotent. Every weakly small division ring is locally, modulo its Jacobson radical, isomorphic to a product of finitely many matrix rings over division rings.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.