Quantum unique ergodicity on locally symmetric spaces: the degenerate lift
Abstract: Given a measure $\bar\mu$ on a locally symmetric space $Y=\Gamma\backslash G/K$, obtained as a weak-{*} limit of probability measures associated to eigenfunctions of the ring of invariant differential operators, we construct a measure $\mu$ on the homogeneous space $X=\Gamma\backslash G$ which lifts $\bar\mu$ and which is invariant by a connected subgroup $A_{1}\subset A$ of positive dimension, where $G=NAK$ is an Iwasawa decomposition. If the functions are, in addition, eigenfunctions of the Hecke operators, then $\mu$ is also the limit of measures associated to Hecke eigenfunctions on $X$. This generalizes previous results of the author and A.\ Venkatesh to the case of "degenerate" limiting spectral parameters.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.