Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Weak invariance principle for the local times of partial sums of Markov Chains (1103.5228v3)

Published 27 Mar 2011 in math.PR

Abstract: Let X_{n} be an integer valued Markov Chain with finite state space. Let S_{n}=\sum_{k=0}{n}X_{k} and let L_{n}(x) be the number of times S_{k} hits x up to step n. Define the normalized local time process t_{n}(x) by t_{n}(x)=\frac{L_{n}(\sqrt{n}(x)}{\sqrt{n}}. The subject of this paper is to prove a functional, weak invariance principle for the normalized sequence t_{n}, i.e. we prove that under some assumptions about the Markov Chain, the normalized local times converge in distribution to the local time of the Brownian Motion.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube