Holonomy reductions of Cartan geometries and curved orbit decompositions
Abstract: We develop a holonomy reduction procedure for general Cartan geometries. We show that, given a reduction of holonomy, the underlying manifold naturally decomposes into a disjoint union of initial submanifolds. Each such submanifold corresponds to an orbit of the holonomy group on the modelling homogeneous space and carries a canonical induced Cartan geometry. The result can therefore be understood as a `curved orbit decomposition'. The theory is then applied to the study of several invariant overdetermined differential equations in projective, conformal and CR-geometry. This makes use of an equivalent description of solutions to these equations as parallel sections of a tractor bundle. In projective geometry we study a third order differential equation that governs the existence of a compatible Einstein metric. In CR-geometry we discuss an invariant equation that governs the existence of a compatible K\"{a}hler-Einstein metric.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.