Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Entanglement Patterns in Mutually Unbiased Basis Sets for N Prime-state Particles (1103.3818v2)

Published 19 Mar 2011 in quant-ph

Abstract: A few simply-stated rules govern the entanglement patterns that can occur in mutually unbiased basis sets (MUBs), and constrain the combinations of such patterns that can coexist (ie, the stoichiometry) in full complements of pN+1 MUBs. We consider Hilbert spaces of prime power dimension (as realized by systems of N prime-state particles, or qupits), where full complements are known to exist, and we assume only that MUBs are eigenbases of generalized Pauli operators, without using a particular construction. The general rules include the following: 1) In any MUB, a particular qupit appears either in a pure state, or totally entangled, and 2) in any full MUB complement, each qupit is pure in p+1 bases (not necessarily the same ones), and totally entangled in the remaining pN-p. It follows that the maximum number of product bases is p+1, and when this number is realized, all remaining pN-p bases in the complement are characterized by the total entanglement of every qupit. This "standard distribution" is inescapable for two qupits (of any p), where only product and generalized Bell bases are admissible MUB types. This and the following results generalize previous results for qubits and qutrits. With three qupits there are three MUB types, and a number of combinations (p+2) are possible in full complements. With N=4, there are 6 MUB types for p=2, but new MUB types become possible with larger p, and these are essential to the realization of full complements. With this example, we argue that new MUB types, showing new entanglement characteristics, should enter with every step in N, and when N is a prime plus 1, also at critical p values, p=N-1. Such MUBs should play critical roles in filling complements.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)