Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 20 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 460 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

Local and Global Analytic Solutions for a Class of Characteristic Problems of the Einstein Vacuum Equations in the "Double Null Foliation Gauge" (1103.3538v1)

Published 17 Mar 2011 in gr-qc, math-ph, and math.MP

Abstract: The main goal of this work consists in showing that the analytic solutions for a class of characteristic problems for the Einstein vacuum equations have an existence region larger than the one provided by the Cauchy-Kowalevski theorem due to the intrinsic hyperbolicity of the Einstein equations. To prove this result we first describe a geometric way of writing the vacuum Einstein equations for the characteristic problems we are considering, in a gauge characterized by the introduction of a double null cone foliation of the spacetime. Then we prove that the existence region for the analytic solutions can be extended to a larger region which depends only on the validity of the apriori estimates for the Weyl equations, associated to the "Bel-Robinson norms". In particular if the initial data are sufficiently small we show that the analytic solution is global. Before showing how to extend the existence region we describe the same result in the case of the Burger equation, which, even if much simpler, nevertheless requires analogous logical steps required for the general proof. Due to length of this work, in this paper we mainly concentrate on the definition of the gauge we use and on writing in a "geometric" way the Einstein equations, then we show how the Cauchy-Kowalevski theorem is adapted to the characteristic problem for the Einstein equations and we describe how the existence region can be extended in the case of the Burger equation. Finally we describe the structure of the extension proof in the case of the Einstein equations. The technical parts of this last result is the content of a second paper.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube