Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Information filtering via preferential diffusion (1102.5499v1)

Published 27 Feb 2011 in physics.data-an and cs.IR

Abstract: Recommender systems have shown great potential to address information overload problem, namely to help users in finding interesting and relevant objects within a huge information space. Some physical dynamics, including heat conduction process and mass or energy diffusion on networks, have recently found applications in personalized recommendation. Most of the previous studies focus overwhelmingly on recommendation accuracy as the only important factor, while overlook the significance of diversity and novelty which indeed provide the vitality of the system. In this paper, we propose a recommendation algorithm based on the preferential diffusion process on user-object bipartite network. Numerical analyses on two benchmark datasets, MovieLens and Netflix, indicate that our method outperforms the state-of-the-art methods. Specifically, it can not only provide more accurate recommendations, but also generate more diverse and novel recommendations by accurately recommending unpopular objects.

Citations (93)

Summary

We haven't generated a summary for this paper yet.