Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inferring users' preferences through leveraging their social relationships (1711.10399v1)

Published 28 Nov 2017 in cs.SI, cs.IR, and physics.soc-ph

Abstract: Recommender systems, inferring users' preferences from their historical activities and personal profiles, have been an enormous success in the last several years. Most of the existing works are based on the similarities of users, objects or both that derived from their purchases records in the online shopping platforms. Such approaches, however, are facing bottlenecks when the known information is limited. The extreme case is how to recommend products to new users, namely the so-called cold-start problem. The rise of the online social networks gives us a chance to break the glass ceiling. Birds of a feather flock together. Close friends may have similar hidden pattern of selecting products and the advices from friends are more trustworthy. In this paper, we integrate the individual's social relationships into recommender systems and propose a new method, called Social Mass Diffusion (SMD), based on a mass diffusion process in the combined network of users' social network and user-item bipartite network. The results show that the SMD algorithm can achieve higher recommendation accuracy than the Mass Diffusion (MD) purely on the bipartite network. Especially, the improvement is striking for small degree users. Moreover, SMD provides a good solution to the cold-start problem. The recommendation accuracy for new users significantly higher than that of the conventional popularity-based algorithm. These results may shed some light on the new designs of better personalized recommender systems and information services.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Xiaofang Deng (5 papers)
  2. Leilei Wu (3 papers)
  3. Xiaolong Ren (1 paper)
  4. Chunxiao Jia (2 papers)
  5. Yuansheng Zhong (2 papers)
  6. Linyuan Lü (68 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.