On $(\le k)$-edges, crossings, and halving lines of geometric drawings of $K_n$ (1102.5065v2)
Abstract: Let $P$ be a set of points in general position in the plane. Join all pairs of points in $P$ with straight line segments. The number of segment-crossings in such a drawing, denoted by $\crg(P)$, is the \emph{rectilinear crossing number} of $P$. A \emph{halving line} of $P$ is a line passing though two points of $P$ that divides the rest of the points of $P$ in (almost) half. The number of halving lines of $P$ is denoted by $h(P)$. Similarly, a $k$\emph{-edge}, $0\leq k\leq n/2-1$, is a line passing through two points of $P$ and leaving exactly $k$ points of $P$ on one side. The number of $(\le k)$-edges of $P$ is denoted by $E_{\leq k}(P) $. Let $\rcr(n)$, $h(n)$, and $E_{\leq k}(n) $ denote the minimum of $\crg(P)$, the maximum of $h(P)$, and the minimum of $E_{\leq k}(P) $, respectively, over all sets $P$ of $n$ points in general position in the plane. We show that the previously best known lower bound on $E_{\leq k}(n)$ is tight for $k<\lceil (4n-2) /9\rceil $ and improve it for all $k\geq \lceil (4n-2) /9 \rceil $. This in turn improves the lower bound on $\rcr(n)$ from $0.37968\binom{n} {4}+\Theta(n{3})$ to {277/729}\binom{n}{4}+\Theta(n{3})\geq 0.37997\binom{n}{4}+\Theta(n{3})$. We also give the exact values of $\rcr(n)$ and $h(n) $ for all $n\leq27$. Exact values were known only for $n\leq18$ and odd $n\leq21$ for the crossing number, and for $n\leq14$ and odd $n\leq21$ for halving lines.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.