Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Stochastic derivatives and generalized h-transforms of Markov processes (1102.3172v1)

Published 15 Feb 2011 in math.PR

Abstract: Let $R$ be a continuous-time Markov process on the time interval $[0,1]$ with values in some state space $X$. We transform this reference process $R$ into $P:=f(X_0)\exp (-\int_01 V_t(X_t) dt) g(X_1)\,R$ where $f,g$ are nonnegative measurable functions on X and V is some measurable function on $[0,1]\times X$. It is easily seen that $P$ is also Markov. The aim of this paper is to identify the Markov generator of $P$ in terms of the Markov generator of $R$ and of the additional ingredients: $f,g$ and $V$ in absence of regularity assumptions on $f,g$ and $V.$ As a first step, we show that the extended generator of a Markov process is essentially its stochastic derivative. Then, we compute the stochastic derivative of $P$ to identify its generator, under a finite entropy condition. The abstract results are illustrated with continuous diffusion processes on $\mathbb{R}d$ and Metropolis algorithms on a discrete space.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube