Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 85 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Kimi K2 186 tok/s Pro
2000 character limit reached

Global Units Modulo Elliptic Units and 2-Ideal Class Groups (1102.3031v1)

Published 15 Feb 2011 in math.NT

Abstract: Let p\in{2,3}, and let k be an imaginary quadratic field in which p decomposes into two distinct primes \mathfrak{p} and \bar{\mathfrak{p}}. Let k_\infty be the unique Z_p-extension of k which is unramified outside of \mathfrak{p}, and let K_\infty be a finite extension of k_\infty, abelian over k. We prove that in K_\infty, the projective limit of the p-class group and the projective limit of units modulo elliptic units share the same \mu-invariant and the same \lambda-invariant. Then we prove that up to a constant, the characteristic ideal of the projective limit of the p-class group coincides with the characteristic ideal of the projective limit of units modulo elliptic units.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube