Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 145 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fractional backward stochastic differential euqations and fractional backward variational inequalities (1102.3014v4)

Published 15 Feb 2011 in math.PR

Abstract: In the framework of fractional stochastic calculus, we study the existence and the uniqueness of the solution for a backward stochastic differential equation, formally written as: [{[c]{l}% -dY(t)= f(t,\eta(t),Y(t),Z(t))dt-Z(t)\delta B{H}(t), \quad t\in[0,T], Y(T)=\xi,.] where $\eta$ is a stochastic process given by $\eta(t)=\eta(0) +\int_{0}{t}\sigma(s) \delta B{H}(s)$, $t\in[0,T]$, and $B{H}$ is a fractional Brownian motion with Hurst parameter greater than 1/2. The stochastic integral used in above equation is the divergence-type integral. Based on Hu and Peng's paper, \textit{BDSEs driven by fBm}, SIAM J Control Optim. (2009), we develop a rigorous approach for this equation. Moreover, we study the existence of the solution for the multivalued backward stochastic differential equation [{[c]{l} -dY(t)+\partial\varphi(Y(t))dt\ni f(t,\eta(t),Y(t),Z(t))dt-Z(t)\delta B{H}(t),\quad t\in[0,T], Y(T)=\xi,.] where $\partial\varphi$ is a multivalued operator of subdifferential type associated with the convex function $\varphi$.

Citations (49)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.