Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Eta cocycles, relative pairings and the Godbillon-Vey index theorem (1102.2876v1)

Published 14 Feb 2011 in math.DG and math.KT

Abstract: We prove a Godbillon-Vey index formula for longitudinal Dirac operators on a foliated bundle with boundary; in particular, we define a Godbillon-Vey eta invariant on the boundary-foliation; this is a secondary invariant for longitudinal Dirac operators on type-III foliations. Moreover, employing the Godbillon-Vey index as a pivotal example, we explain a new approach to higher index theory on geometric structures with boundary. This is heavily based on the interplay between the absolute and relative pairings of K-theory and cyclic cohomology for an exact sequence of Banach algebras which in the present context takes the form $0\to J\to A\to B\to 0$, with J dense and holomorphically closed in the C*-algebra of the foliation and B depending only on boundary data. Of particular importance is the definition of a relative cyclic cocycle $(\tau_{GV}r,\sigma_{GV})$ for the pair $A\to B$; $\tau_{GV}r$ is a cyclic cochain on A defined through a regularization, `a la Melrose, of the usual Godbillon-Vey cyclic cocycle $\tau_{GV}$; $\sigma_{GV}$ is a cyclic cocycle on B, obtained through a suspension procedure involving $\tau_{GV}$ and a specific 1-cyclic cocycle (Roe's 1-cocycle). We call $\sigma_{GV}$ the eta cocycle associated to $\tau_{GV}$. The Atiyah-Patodi-Singer formula is obtained by defining a relative index class $\Ind (D,D\partial)\in K_* (A,B)$ and establishing the equality <\Ind (D),[\tau_{GV}]>=<\Ind (D,D\partial), [\taur_{GV}, \sigma_{GV}]>$. The Godbillon-Vey eta invariant $\eta_{GV}$ is obtained through the eta cocycle $\sigma_{GV}$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube