Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minimum Redundancy Coding for Uncertain Sources (1102.2678v2)

Published 14 Feb 2011 in cs.IT and math.IT

Abstract: Consider the set of source distributions within a fixed maximum relative entropy with respect to a given nominal distribution. Lossless source coding over this relative entropy ball can be approached in more than one way. A problem previously considered is finding a minimax average length source code. The minimizing players are the codeword lengths --- real numbers for arithmetic codes, integers for prefix codes --- while the maximizing players are the uncertain source distributions. Another traditional minimizing objective is the first one considered here, maximum (average) redundancy. This problem reduces to an extension of an exponential Huffman objective treated in the literature but heretofore without direct practical application. In addition to these, this paper examines the related problem of maximal minimax pointwise redundancy and the problem considered by Gawrychowski and Gagie, which, for a sufficiently small relative entropy ball, is equivalent to minimax redundancy. One can consider both Shannon-like coding based on optimal real number ("ideal") codeword lengths and a Huffman-like optimal prefix coding.

Summary

We haven't generated a summary for this paper yet.