Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Gaussian upper bounds for heat kernels of continuous time simple random walks (1102.2265v2)

Published 11 Feb 2011 in math.PR

Abstract: We consider continuous time simple random walks with arbitrary speed measure $\theta$ on infinite weighted graphs. Write $p_t(x,y)$ for the heat kernel of this process. Given on-diagonal upper bounds for the heat kernel at two points $x_1,x_2$, we obtain a Gaussian upper bound for $p_t(x_1,x_2)$. The distance function which appears in this estimate is not in general the graph metric, but a new metric which is adapted to the random walk. Long-range non-Gaussian bounds in this new metric are also established. Applications to heat kernel bounds for various models of random walks in random environments are discussed.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.